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Short Papers

Analysis of Slot-Coupled Transitions from
Microstrip-to-Microstrip and Microstrip-to-Waveguides

Amjad A. Omar and Nihad I. Dib

Abstract— This paper provides an accurate, versatile, and
computationally efficient method for the analysis of slot-coupled
transitions from microstrip-to-microstrip, and microstrip-to-rectangular
and parallel-plate waveguides. The accuracy of this method is M
ensured by satisfying all the boundary conditions through a mixed
electric-magnetic current integral equation formulation, combined with w, port 1
the moment method. Computational efficiency is achieved by limiting
the discretization to only the strips and apertures and by using the Fig. 1. A three-dimensional (3-D) view of the microstrip-to-microstrip tran-
accurate and rapidly convergent complex images. To verify the accuracy sition via an aperture.
of this method, the transitions are analyzed using the finite-difference
time-domain (FDTD) method. Experimental results are also obtained for
some structures. Close agreement is found between the complex image - D —~ h -
results, the FDTD results, and experiment over a wide frequency range. e

ground plane

Index Terms—Complex images, integral equation, microstrip, slot,
waveguides.

|. INTRODUCTION Slot

There has been a recent trend toward building circuits which \
have more than one dielectric layer and more than one level of
metallization to reduce the size of microwave and millimeter-wave
circuits. Some of the metallization layers are used to isolate the active
from the passive elements to reduce the parasitic coupling between \
them. To this end, it is important to study the transition between \
microstrip and microstrip through a slot in the common ground plane,
as shown in Fig. 1. &_

Two other important classes of transitions are the microstrip-to- Parallel Plate
parallel-plate waveguide (MS—-PWG) and microstrip-to-rectangular
waveguide (MS—RW) transitions via a slot in the microstrip grounﬁ'g'
plane (Figs. 2 and 3) [1], [2]. These transitions are important in
high-Q filters, high-Q oscillators, and nonreciprocal components. The e h o~ a -
ability to analyze these transitions becomes very important, especially = [ e e
in the millimeter-wave frequency range.

To achieve optimum design of the different transitions, it is ?
important that an accurate and computationally efficient method be ! |
developed which can be easily interfaced with available optimization Slot I ‘
design software. As far as is known, there have been litle or no \ |
publications on the theoretical analysis of slot-coupled microstripline
(MS)-to-waveguide transitions [1]. However, several methods have
been presented in the literature to analyze the transition between two .
microstriplines (MS-MS) through a slot, shown in Fig. 1. Some of \ L
these methods, like the finite-difference time-domain (FDTD) method \ e
and transmission-line matrix (TLM) method, require the discretization \ L \

. . . \ SN —— ,_»/v—‘-»—a\_,/\ﬁw
of the entire volum_e of the _cwcun. They are, therefqre,_slowly Rectangulor waveguide e
convergent and require excessive memory. Also, the application of the Microstrip Line
electric-field integral-equation technique (EFIE) requires segmenting .
the entire conducting surface of the transition, including the inf?9- 3- The MS-RW transition.

4_(/)‘,\\4 ——

Microstrip Line

2. The MS-PWG transition.
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Fig. 4. Splitting the MS—MS transition into two sub-problems equivalent to
the upper and lower half spaces, respectively. (a) Lower half space. (b) Upper
half space.

A more efficient form of the integral equation technique was
applied in [3] for the analysis of the MS—MS transition. Unlike the
EFIE, which uses only electric currents, this technique uses both
electric and magnetic currents, which flow on the strips and apertures,
respectively. This limits the discretization to only the strips and
apertures, and, thus, saves a lot of memory and computation time.
However, the time-consuming numerical integrations of Sommerfeld
integrals are evaluated in [3] to obtain the spatial Green’s functions
of the structure. Therefore, there is still a need for a technique which
is faster and, hence, more suitable for use with CAD programs.

In this paper, a mixed electric-magnetic current integral equation
formulation similar to that in [3] is used. However, this paper’'s
Green’s functions for the coupling between the electric currents of
the MS’s, magnetic current of the aperture, and for the cross coupling
between the electric and magnetic currents, are all calculated using
the accurate and rapidly convergent complex image technique [4],
[5]. The only case where complex images are not used is when the
Green’s functions of the rectangular waveguide (RW) are evaluated.
In this case, the real waveguide images are used instead. The complex
image technique avoids the time-consuming numerical integration
of Sommerfeld integrals and yields at least a ten-fold reduction
in computation time with less than 1% error, as compared to the
numerical integration. These complex images include the effect of
the surface waves and leaky waves and, therefore, have no restriction)
on the substrate thickness.

To verify the accuracy of the results obtained using the complex
image technique, the same transitions are analyzed using the FDTD
method. The FDTD formulation is simple and well known [6]-[8]
and, thus, will not be presented here. Instead, the emphasis will be
on the formulation of the mixed electric-magnetic current integral
equation and the use of the computationally fast complex image
technique to evaluate all the Green’s functions.

Il. THEORY

A. MS—-MS Transition

To solve the MS—MS problem, the structure of Fig. 1 is split into
two sub-problems, equivalent to the lower and upper microstrips,
as shown in Fig. 4(a) and 4(b), respectively. Equivalent electric and
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magnetic currents flow on the strips and apertures, respectively, of
both sub-problems to satisfy the boundary conditions, as follows.

The continuity of the tangential electric field on the aperture is
enforced by choosing the magnetic current on the aperture of
the lower sub-problem, which flows along thedirection IL(,};

of Fig. 4(a)], to be equal and opposite to that on the aperture
of the upper sub- problemT .y Of Fig. 4(b)].

The continuity of the tangential magnetic field on the aperture
is satisfied by the following equation:

) (1)) + /) (1) = 1, (I9) + 12 (I7) - (@)

wherel!) andI{? are ther-directed electric currents flowing
on the lower and upper microstrips, respectively, wiﬂj,éf,

and Iﬁff, are they-directed magnetic currents flowing on the
aperture in the lower and upper sub-problems, respectively.
H“) (Ié‘)) andH( )(I,,ly) denote they-directed magnetic field

on the aperture of théh sub-problem caused by andirected
electric current on the MS and @directed magnetic current
on the aperture, respectively.

The fields in (1) can be expressed in terms of the mixed
potentials of electric and magnetic currents [9], as follows:

H()(I,(,’L)y):—jw/ G() (r/r") IS () S’
Aper.
1 [ 9 aJ“
+— Gl Nt | ds' (@
Jw Aper. ay « ( / ( )
HY (1) = HY., (18) + B, (12) @3)
where
), (19) = [v x [ G ds'} i (@)
M;

H,(18)) = [v x /M. GY (r/r)I ()2 dS’} -§. (5)

In (2), use has been made of the continuity equation for
magnetic current and charge [9]. In (Z},}’iy is the Green’s
function for they-directed electric vector potential due to a
y-directed magnetic current in thiéh sub-problem [10], while
GE,‘)n is the scalar potential due to a magnetic charge [10].
G(?“ in (4) is the Green'’s function for the-directed magnetic
vector potential due to am-directed electric current in the
ith sub-problem, WhiIeGSQI in (5) is the Green’s function
for the z-directed magneiic vector potential due to an
directed electric current, with both source and field located
inside a microstrip substrate. These Green’s functions are given
in Appendix A. The areal{;, over which the integrals are
performed, is the microstrip of thgh sub-problem.

The vanishing of the tangential electric field on the MS’s of
the upper and lower sub-problems is satisfied by the following
equation:

E( )(I( )) + E( )(IS;LL) Eext ©)

wherei = 1 and2 corresponds to the lower and upper sub-
problems, respectlverE and ES*' are the scattered and
impressed electric fields, respectively.

The electric and magnetic current densities are expanded as fol-
lows:

l\/&‘)

TR0 =318 fr D) (7)
n=1

N
']my(r,) = mer/ nfn (U )T (I ) (8)

n=1



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 7, JULY 1997 1129

where N!" and N, are the number of segments on the microstri[lZl(fl)h], which results from a different set of Green'’s functions. In the

of the ith sub-problem and aperture, respectivefy. and f,* are case of MS—-PWG transition, the complex image Green'’s functions
pulse basis functions, which are unity along thth electric or correspond to a magnetic current between two parallel conducting
magnetic current segments, respectively, and zero elsewtfeend plates. The expressions for these Green’s functions can be found in
' account for the edge condition on the strips and apertures [1[]7]. In the case of MS—RW transition, the Green'’s functions needed

respectively, and are given by are those for a magnetic current inside a rectangular waveguide. To
o 1 avoid the complexity of the complex image solution of a waveguide,
n(y) = — only the classical real images are used. The computational effort
T @) — (y")? involved is explained in the following section.
1 If

. NUMERICAL RESULTS

T:Ln .1"): (W )2 (/)2 (9)

whereW " andW,, are the widths of the microstrip of thgh sub-

problem and the width of the aperture, respectively. The ChO'Cet f'ned using the complex image technique, the numerical integration

the basis functions in (7) and (8) was first validated by Glisson and sommerfeld integrals in [3], and FDTD. Fig. 5(a) shows that the

Wilton [12], Who showed that the use of pulse basis functions 'nSteaﬂference in|S11| between the complex image results and the results
of rooftop basis functions has very little effect on the moment-meth [3] is less than 1 dB over the range of frequencies between 2

solution. This choice, however, significantly reduces the computatiogﬁd 4 GHz. Fig. 5(b) shows a maximum difference$a: | of 0.15

[13]. B, while Fig. 5(c) shows a maximum difference [ifis1| of 1.2

6The .Galtirkm momgnt fmet?od [1?] 7'3 thgn 8app|I|ed to (1.) t?tn B. However, there is practically no difference between the complex
(6), using the expansion functions of (7) and (8) also as weig 'rinage results and the EDTD results.

functions. This results are shown in the following matrix equation: To demonstrate the accuracy of the complex image technique at

A. MS—-MS Transition
Fig. 5 compares th&-parameters of the MS—MS transition ob-

vy [Zéi)] [ZS,{] _ [0] I higher frequencies, Fig. 6 shows a comparison with experimental
0 | = [[2%] [Z8h]+[25h] (232 | |15, | (10) results and FDTD theoretical results, over the range of frequencies
0 [0] [Z25)] [28)] o between 0.5 and 11 GHz for an MS—MS transition. The maximum

(1) ) ] o difference between the complex image results and the experiment is
whereZe.." and Ze." are the lower and upper microstrip impedancg,qq than 2 dB over the whole frequency range investigated. This

: : () )

matrixes, respectively [15Zmm and Zmm are the lower and up- gifference may be attributed to the fact that the authors’ model
per magnetic-magnetic (aperture) impedance matrixes, respectivelysmes infinitely thin perfect conductors and infinitely wide ground
They are the dual of the electric—electric impedance matrixes in [ﬂlanes. Fig. 7 showiS: | and|Ss: | as compared to FDTD results for

(1) (2) ; ; - . . .
Zme and Zm: are the matrixes for the magnetic voltages on thge same frequency range and dimensions of Fig. 6. The maximum
aperture due to unit electric currents on the microstrips of the lowgfierence in|S21| and |Ss1] is less than 2 dB.

and upper sub-problems, respectively. (Slgnge these two matrixes havgne above results verify the accuracy of the complex image
snm|l?1r) forms,(gnly the expression of... is given in Appendix method as compared with the FDTD method and experiments. As
B. Zewm and Ze,, are the matrixes for the electric voltages on theor computational efficiency, the authors’ method requires less than
microstrips of the lower and upper sub-problems, respectively, d4emin per frequency point on an 80386 40 MHz PC. On the other
to unit magnetic currents on the aperture. These matrixes were deriygfd, the FDTD code had to be executed on a DEC ALPHA machine
following the same procedure explained in Appendix B for obtainingnd the entire volume of the structure had to be discretized.

Z{3). The details of the calculations of the self terms of the matrixes

Zee @Nd Zrnrm in (10) can be found in [15]. B. MS—Parallel Plate and MS—Rectangular Waveguide Transitions

It is important to mention that the Green’'s functions in this _. . .
Fig. 8 shows|S:1| of an MS-PWG transition computed using

paper are evaluated using the complex images technique [4], 5;), ; . :
as explained in Appendix A. This technique avoids the numeric th the complex image technique, described above, and the FDTD
the two sets of results agree very well. It should be

integration of Sommerfeld integrals used to perform the inveré@ethpd' Clearly, -
Fourier transform of the spectral functions. Instead, the specthnt'oned that the_re has been no attempt to optimize the structure
functions are approximated as finite sums of complex exponenti(I;\(Psget better coupling. . .

using Prony’s method [16] and the Sommerfeld integral is performedAS for the MS-RW transition, Fig. 9 compargS.|, calculated

analytically using Sommerfeld’s identity, resulting in a small numbét>'"9 the complex image method, with that calculated using the
3%. The number

of images with complex amplitudes and complex locations. TH:eDTD method. The maximum difference is only , . o
authors’ numerical tests have revealed that the complex imag?égeal .|mages used to calculate each of the Green’s functions inside
provide at least a ten-fold reduction in computation time with less thghRW is 30 30.

1% error as compared to the numerical integration of SommerfeIFThe results for the MS-MS, MS-PWG, and M_S_RW transitions
integrals. clearly show the accuracy as well as the versatility of the complex

image solution of the transitions in terms of the ability to solve a
variety of transitions. Currently, work is being done to extend this

B. MS—-PWG and MS—-RW Transition ; . o .
technique to other multilayered transitions (e.g., coplanar waveguide
To solve the MS-PWG or MS-RW transitions shown in Figs. &cpw) patch, CPW—RW).

and 3, respectively, (10) needs to be slightly modified, as follows:
P’L(Qu)} _ {[Zﬁl)] [252] } FCL)} IV. CONCLUSION
= (1) (1) (2) (i) |- (11)
0 [ZW] [Zﬁ““] + [me] Loy In this paper, an accurate and computationally efficient method
All the matrixes in (11) remain the same as in (10), except fdor solving the problems of aperture coupling from microstrip-to-
the magnetic—-magnetic coupling matrix of the upper sub-problemicrostrip, microstrip-to-parallel plate, and MS—RW transitions has
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e and the rapidly convergent complex-image Green'’s functions, makes
this method more suitable for use with optimization software to
achieve optimum designs of the different transitions analyzed.

APPENDIX A:
(e )
S _ao A -— — - Complex Images COMPLEX IMAGE SPATIAL GREENS FUNCTIONS
& oo ko Exparirmoent
1 — 1D (Ga,, AND G4_,) IN A MICROSTRIP SUBSTRATE
P T e e bt Lt o €kttt A s 1 s [
O g <} & =] 1T O ’ 1 i i
Cregueney coisS The Green'’s functions§..,, andG4_,) in the space domain are

derived using the complex image technique [4], [5]. The Green’s
Ei?t-sﬁ-anﬁoggiﬂsorgsbﬁéwfoetg elxgzje%ri?]%ntgl fr?SrU“S, C?”&P'ﬁ:ﬁ rim?rge femnctions given below are for the lower substrate where the ground
(I‘/J‘H,“’ e 0.2028ucm, oo - :W2.94’,3iu“§ %F’L“p:e 0‘07'220371”’05' plane is located at = 0, the source is located at a g_enerall Iolcatlon
L = 0.96 cm, W = 0.068 cm.) (z, y, z) and the field is located at a general location, @', ='),
where—h < z, 7 < 0 (see Fig. 1). The corresponding Green’s
functions of the upper substrate can be easily obtained by replacing
been presented. This method uses a mixed electric-magnetic curgemlith —> and =’ with —z'.
integral equation formulation with moment-method and complex
images. The results were compared with the FDTD method apd Green’s Function folG
experiments to demonstrate the accuracy of the proposed method. )
Unlike the other methods presented in the literature to sol\fe
the transitions, the efficient application of the moment method (0?
discretizing only the strips and apertures) combined with the accurate k2 4k = ko=, k2, + kS = k. (12)

z z0

Let &, be the spectral variable, arid,, k., be related to:, as
llows:
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Then the Green’s function fai 4, in the spectral domain is given where

by
k] = ko Ep
GAH — .HO {e—ijI:—:, _€—jk;1‘:+:,| o = \/p2 +(Z—Z/)2
J2k=y ry = VRt (z+2)?
> HR%A”L“ + Glkp) | Silheys 2,2 >} (13) = (s 2 )
oles pp
Hpol 7“2:\//)2—1—( 7+z’+2h—7b”)
where
r3 = \/p +( + 2+ 2h —jb”)
Sl(k;,l- z, /7,) = _Cijkzl(:/izu'ﬁh) - Cijk:l(72+2,+2h) 2 2
; — y — ¢ _ ahTT
Gk (b 2R ke (42 —2h) (14) T = \/p +( 2=z +2h — jb] ) : (23)
J4Respkypk., , .
Glky) = Rop — Y == (15) B. Green’s Function foiG4 .,
k2 — k2
TEpoles , (24
P .
= Dig Ga, =1 [ I RS HD (kop)k,dk,  (24)
. . dr J_ o (J2k-y)jk=,
TE _ kzl — L‘zo >
o = —Lz —i—k, .
where is the Hankel function of the second kind of order zero,
[T h Héz)'thIf i f th d kind of ord
Drg=1-r4 e J°F= (16) and
In (15), k,, andRes,, are, respectively, the TE pole and its residue Sok.,) = 90 Ik (BR) _ 9, =ik (h) (25)
given by R 2(er — 1)KZ, 26)
. Rre 7 (kag + koy ) B2y + vk )Dr D
Res, = lim (k, — k,p)——. 17 o o ! 0
! kpﬁkpp( p P52k, (17) Do = 1 — M =ik b
) . ™ _ ks — Srk/-
Using Prony’s method [16]+(%,) can be approximated as follows: e (27)
bz, Srfvzg
Nya . . .
G(ky) = Z pe —hzy T (18) and Drg is given in (16). )
? — Next, —jk, is replaced in (24) with%, and the following Prony

approximation are then performed:
wherea;® andb;® are complex coefficients.

Performing the inverse Fourier transform of (13) and making use of ‘g o ke bF
the Sommerfeld identity and residue theorem [16], the spatial Green’s Gkay 2= Z e (28)
function for G4, is given by =t

Nze

wherea;” andb;* are complex coefficients.
Substituting (28) in (24) and performing the integration using the

Sommerfeld identity results in
where p is the radial distance between the source and field. The vy

termGa,,, in (19) represents the contribution of the quasi-dynamic o Neo o e—ikiri

images, which are dominant in the near field, while the tétm . ., Ga,, = — Z a;’ — (29)
L . v 47 4 dx 1y

represents the contribution of TE surface waves dominant in the far i=1

field, and the term74_, ., represents the contribution of a set of

images with complex amplitude and complex location, which are

dominant in the intermediate field. These three contributions are given

by

G—Aa:a:(/)v sz,) = G a,a.O + G’la.a. sW + GAa.a. ,CI (19)

where

re= ot + (=i5)".

. Ho {6”‘”0 eIk } 20) APPENDIX B:
Appn — 7 -

er0 Ag o ) COUPLING MATRIXES BETWEEN THE MAGNETIC CURRENT OF THE
APERTURE AND THEELECTRIC CURRENT ON THE MICROSTRIPLINE

Mo

Clao o = TEZ ( 2mj)RespSi (ks 2, 2') (21) Applying the Galerkin moment-method procedure and using the

‘pi{es , , Gauss-Chebyshev integration rule to take care of the transverse
G _ ,u_oi § {_ e~k _ emIk1r2 current distribution functions;; and 7,;* in (7) and (8) gives the

Ol A & 1 o following expression for the coupling matriZ’.) of the lower
8-]’“17'3 8‘”"1"4 sub- problem.
+— + } (22)
3 4 [20)] = [22] + 23] (30)

—efjk”f{[ ki (z —a')? = jkiri = 107 4+ 3(x = 2')* (jkari + 1)}

r

Viey.2'y') = (37

=
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where [9] R. S. Elliott, Antenna Theory and Design Englewood Cliffs, NJ:
1 N M Prentice-Hall, 1981.
zx N rx [10] D. G. Fang, J. J. Yang, and K. Sha, “The exact images of a horizontal
Zme(m,n) = AT NM Z Z T kL (31) magnetic dipole above or within a microstrip substrate,Pioc. Sino-
k=1L=1 Japanese Joint Meeting Optical Fiber Sci. and EM Thedanjing,
Ioe _ i V(e y, o', y) dyda’ (32) China, 1987, pp. 693-698.
ok T TLoYs &5 Yk) AYaX [11] R. E. Collin,Field Theory of Guided Waves New York: McGraw-Hill,
ok L 1991, pp. 23-26.

where N and M represent the number of Gaussian quadrature nodgg! A- W. Glisson and D. R. Wilton, *Simple and efficient numerical

. . . methods for problems of electromagnetic radiation and scattering from
on the magnetic and electric segments, respectively.and y. surfaces,”IEEE Trans. Antennas Propagatol. AP-29, pp. 593-603,

are the Gaussian quadrature nodes on the aperture and microstrip, Sept. 1980.
respectively, and;, , andl;; , are the lengths of the electric and[13] G. E. Howard, “Analysis of passive and active microwave integrated cir-
magnetic segments, respectively. Also cuits by the field approach,” M.A.Sc. thesis, Univ. Waterloo, Waterloo,
Ont., Canada, 1988.
. ;o (=jkiro = 1) _jikirg [14] R. F. Harrington,Field Computation by Moment MethodsMalabar,
Viey.a'y) = 2h——5——e (33) FL: R. E. Krieger, 1968, pp. 62-81.

0 [15] D. A. Huber, “A moment method analysis of stripline circuits through
where multi-pipe field modeling,” M.A.Sc. thesis, Univ. Waterloo, Waterloo,
Ont., Canada, 1991.

ro = \/(’E -z + (y—y' )2+ h2. (34) [16] R. W. Hamming, Numerical Methods for Scientists and Engineers
New York: Dover, 1973, pp. 620-622.
On the other hand [17] A. A.Omar and Y. L. Chow, “Coplanar waveguide with top and bottom
New N M shields in place of air-bridgesJEEE Trans. Microwave Theory Tech.
22 (mon) = 1 Zaf,ﬁ Z Z I er (35) vol. 41, pp. 1559-1563, Sept. 1993.

4 NM
=1 k=1L=1

whereN., anda;” are, respectively, the number and amplitude of
the complex images of74_,. Thus

ik = / / V(er,y. 2’ yx) dy da’ (36) Effect of Conductor Backing on the Line-to-Line
Bax’nL Coupling Between Parallel Coplanar Lines

V'(x,y,2',y") is shown in (37) at the bottom of the previous page,

Kwok-Keung M. Cheng
and

2 _ i)
=yr +( Jb; ) : (38) Abstract—A good estimate of the coupling effect between parallel

coplanar waveguide (CPW) lines is important, especially for monolithic
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