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Short Papers

Analysis of Slot-Coupled Transitions from
Microstrip-to-Microstrip and Microstrip-to-Waveguides

Amjad A. Omar and Nihad I. Dib

Abstract— This paper provides an accurate, versatile, and
computationally efficient method for the analysis of slot-coupled
transitions from microstrip-to-microstrip, and microstrip-to-rectangular
and parallel-plate waveguides. The accuracy of this method is
ensured by satisfying all the boundary conditions through a mixed
electric–magnetic current integral equation formulation, combined with
the moment method. Computational efficiency is achieved by limiting
the discretization to only the strips and apertures and by using the
accurate and rapidly convergent complex images. To verify the accuracy
of this method, the transitions are analyzed using the finite-difference
time-domain (FDTD) method. Experimental results are also obtained for
some structures. Close agreement is found between the complex image
results, the FDTD results, and experiment over a wide frequency range.

Index Terms—Complex images, integral equation, microstrip, slot,
waveguides.

I. INTRODUCTION

There has been a recent trend toward building circuits which
have more than one dielectric layer and more than one level of
metallization to reduce the size of microwave and millimeter-wave
circuits. Some of the metallization layers are used to isolate the active
from the passive elements to reduce the parasitic coupling between
them. To this end, it is important to study the transition between
microstrip and microstrip through a slot in the common ground plane,
as shown in Fig. 1.

Two other important classes of transitions are the microstrip-to-
parallel-plate waveguide (MS–PWG) and microstrip-to-rectangular
waveguide (MS–RW) transitions via a slot in the microstrip ground
plane (Figs. 2 and 3) [1], [2]. These transitions are important in
high-Q filters, high-Q oscillators, and nonreciprocal components. The
ability to analyze these transitions becomes very important, especially
in the millimeter-wave frequency range.

To achieve optimum design of the different transitions, it is
important that an accurate and computationally efficient method be
developed which can be easily interfaced with available optimization
design software. As far as is known, there have been little or no
publications on the theoretical analysis of slot-coupled microstripline
(MS)-to-waveguide transitions [1]. However, several methods have
been presented in the literature to analyze the transition between two
microstriplines (MS–MS) through a slot, shown in Fig. 1. Some of
these methods, like the finite-difference time-domain (FDTD) method
and transmission-line matrix (TLM) method, require the discretization
of the entire volume of the circuit. They are, therefore, slowly
convergent and require excessive memory. Also, the application of the
electric-field integral-equation technique (EFIE) requires segmenting
the entire conducting surface of the transition, including the infi-
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Fig. 1. A three-dimensional (3-D) view of the microstrip-to-microstrip tran-
sition via an aperture.

Fig. 2. The MS–PWG transition.

Fig. 3. The MS–RW transition.

nite microstrip ground plane.1 Therefore, the EFIE is numerically
inefficient for solving the aperture coupling problem.
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(a)

(b)

Fig. 4. Splitting the MS–MS transition into two sub-problems equivalent to
the upper and lower half spaces, respectively. (a) Lower half space. (b) Upper
half space.

A more efficient form of the integral equation technique was
applied in [3] for the analysis of the MS–MS transition. Unlike the
EFIE, which uses only electric currents, this technique uses both
electric and magnetic currents, which flow on the strips and apertures,
respectively. This limits the discretization to only the strips and
apertures, and, thus, saves a lot of memory and computation time.
However, the time-consuming numerical integrations of Sommerfeld
integrals are evaluated in [3] to obtain the spatial Green’s functions
of the structure. Therefore, there is still a need for a technique which
is faster and, hence, more suitable for use with CAD programs.

In this paper, a mixed electric–magnetic current integral equation
formulation similar to that in [3] is used. However, this paper’s
Green’s functions for the coupling between the electric currents of
the MS’s, magnetic current of the aperture, and for the cross coupling
between the electric and magnetic currents, are all calculated using
the accurate and rapidly convergent complex image technique [4],
[5]. The only case where complex images are not used is when the
Green’s functions of the rectangular waveguide (RW) are evaluated.
In this case, the real waveguide images are used instead. The complex
image technique avoids the time-consuming numerical integration
of Sommerfeld integrals and yields at least a ten-fold reduction
in computation time with less than 1% error, as compared to the
numerical integration. These complex images include the effect of
the surface waves and leaky waves and, therefore, have no restriction
on the substrate thickness.

To verify the accuracy of the results obtained using the complex
image technique, the same transitions are analyzed using the FDTD
method. The FDTD formulation is simple and well known [6]–[8]
and, thus, will not be presented here. Instead, the emphasis will be
on the formulation of the mixed electric–magnetic current integral
equation and the use of the computationally fast complex image
technique to evaluate all the Green’s functions.

II. THEORY

A. MS–MS Transition

To solve the MS–MS problem, the structure of Fig. 1 is split into
two sub-problems, equivalent to the lower and upper microstrips,
as shown in Fig. 4(a) and 4(b), respectively. Equivalent electric and

magnetic currents flow on the strips and apertures, respectively, of
both sub-problems to satisfy the boundary conditions, as follows.

1) The continuity of the tangential electric field on the aperture is
enforced by choosing the magnetic current on the aperture of
the lower sub-problem, which flows along they-direction [I(1)my

of Fig. 4(a)], to be equal and opposite to that on the aperture
of the upper sub-problem [I(2)my of Fig. 4(b)].

2) The continuity of the tangential magnetic field on the aperture
is satisfied by the following equation:
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whereI(1)ex andI(2)ex are thex-directed electric currents flowing
on the lower and upper microstrips, respectively, whileI
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my

and I(2)my are they-directed magnetic currents flowing on the
aperture in the lower and upper sub-problems, respectively.
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on the aperture of theith sub-problem caused by anx-directed
electric current on the MS and ay-directed magnetic current
on the aperture, respectively.
The fields in (1) can be expressed in terms of the mixed
potentials of electric and magnetic currents [9], as follows:
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In (2), use has been made of the continuity equation for
magnetic current and charge [9]. In (2),G(i)

F is the Green’s
function for they-directed electric vector potential due to a
y-directed magnetic current in theith sub-problem [10], while
G
(i)
qm is the scalar potential due to a magnetic charge [10].

G
(i)

A in (4) is the Green’s function for thex-directed magnetic
vector potential due to anx-directed electric current in the
ith sub-problem, whileG(i)

A in (5) is the Green’s function
for the z-directed magnetic vector potential due to anx-
directed electric current, with both source and field located
inside a microstrip substrate. These Green’s functions are given
in Appendix A. The areaMi, over which the integrals are
performed, is the microstrip of theith sub-problem.

3) The vanishing of the tangential electric field on the MS’s of
the upper and lower sub-problems is satisfied by the following
equation:
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where i = 1 and 2 corresponds to the lower and upper sub-
problems, respectively.E(i)

x and Eext

x are the scattered and
impressed electric fields, respectively.

The electric and magnetic current densities are expanded as fol-
lows:
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whereN (i)
e andNm are the number of segments on the microstrip

of the ith sub-problem and aperture, respectively.fen and fmn are
pulse basis functions, which are unity along thenth electric or
magnetic current segments, respectively, and zero elsewhere.� en and
�mn account for the edge condition on the strips and apertures [11],
respectively, and are given by
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whereW (i)
e andWm are the widths of the microstrip of theith sub-

problem and the width of the aperture, respectively. The choice of
the basis functions in (7) and (8) was first validated by Glisson and
Wilton [12], who showed that the use of pulse basis functions instead
of rooftop basis functions has very little effect on the moment-method
solution. This choice, however, significantly reduces the computations
[13].

The Galerkin moment method [14] is then applied to (1) and
(6), using the expansion functions of (7) and (8) also as weighting
functions. This results are shown in the following matrix equation:
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whereZ(1)
ee andZ(2)

ee are the lower and upper microstrip impedance
matrixes, respectively [15].Z(1)

mm and Z(2)
mm are the lower and up-

per magnetic–magnetic (aperture) impedance matrixes, respectively.
They are the dual of the electric–electric impedance matrixes in [4].
Z
(1)
me and Z

(2)
me are the matrixes for the magnetic voltages on the

aperture due to unit electric currents on the microstrips of the lower
and upper sub-problems, respectively. Since these two matrixes have
similar forms, only the expression ofZ(1)

me is given in Appendix
B. Z(1)

em andZ(2)
em are the matrixes for the electric voltages on the

microstrips of the lower and upper sub-problems, respectively, due
to unit magnetic currents on the aperture. These matrixes were derived
following the same procedure explained in Appendix B for obtaining
Z
(1)
me. The details of the calculations of the self terms of the matrixes

Zee andZmm in (10) can be found in [15].
It is important to mention that the Green’s functions in this

paper are evaluated using the complex images technique [4], [5],
as explained in Appendix A. This technique avoids the numerical
integration of Sommerfeld integrals used to perform the inverse
Fourier transform of the spectral functions. Instead, the spectral
functions are approximated as finite sums of complex exponentials
using Prony’s method [16] and the Sommerfeld integral is performed
analytically using Sommerfeld’s identity, resulting in a small number
of images with complex amplitudes and complex locations. The
authors’ numerical tests have revealed that the complex images
provide at least a ten-fold reduction in computation time with less than
1% error as compared to the numerical integration of Sommerfeld
integrals.

B. MS–PWG and MS–RW Transition

To solve the MS–PWG or MS–RW transitions shown in Figs. 2
and 3, respectively, (10) needs to be slightly modified, as follows:
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All the matrixes in (11) remain the same as in (10), except for
the magnetic–magnetic coupling matrix of the upper sub-problem

[Z
(2)
mm], which results from a different set of Green’s functions. In the

case of MS–PWG transition, the complex image Green’s functions
correspond to a magnetic current between two parallel conducting
plates. The expressions for these Green’s functions can be found in
[17]. In the case of MS–RW transition, the Green’s functions needed
are those for a magnetic current inside a rectangular waveguide. To
avoid the complexity of the complex image solution of a waveguide,
only the classical real images are used. The computational effort
involved is explained in the following section.

III. N UMERICAL RESULTS

A. MS–MS Transition

Fig. 5 compares theS-parameters of the MS–MS transition ob-
tained using the complex image technique, the numerical integration
of Sommerfeld integrals in [3], and FDTD. Fig. 5(a) shows that the
difference injS11j between the complex image results and the results
of [3] is less than 1 dB over the range of frequencies between 2
and 4 GHz. Fig. 5(b) shows a maximum difference injS21j of 0.15
dB, while Fig. 5(c) shows a maximum difference injS31j of 1.2
dB. However, there is practically no difference between the complex
image results and the FDTD results.

To demonstrate the accuracy of the complex image technique at
higher frequencies, Fig. 6 shows a comparison with experimental
results and FDTD theoretical results, over the range of frequencies
between 0.5 and 11 GHz for an MS–MS transition. The maximum
difference between the complex image results and the experiment is
less than 2 dB over the whole frequency range investigated. This
difference may be attributed to the fact that the authors’ model
assumes infinitely thin perfect conductors and infinitely wide ground
planes. Fig. 7 showsjS21j andjS31j as compared to FDTD results for
the same frequency range and dimensions of Fig. 6. The maximum
difference injS21j and jS31j is less than 2 dB.

The above results verify the accuracy of the complex image
method as compared with the FDTD method and experiments. As
for computational efficiency, the authors’ method requires less than
4 min per frequency point on an 80 386 40 MHz PC. On the other
hand, the FDTD code had to be executed on a DEC ALPHA machine
and the entire volume of the structure had to be discretized.

B. MS–Parallel Plate and MS–Rectangular Waveguide Transitions

Fig. 8 showsjS11j of an MS–PWG transition computed using
both the complex image technique, described above, and the FDTD
method. Clearly, the two sets of results agree very well. It should be
mentioned that there has been no attempt to optimize the structure
to get better coupling.

As for the MS–RW transition, Fig. 9 comparesjS11j, calculated
using the complex image method, with that calculated using the
FDTD method. The maximum difference is only 3%. The number
of real images used to calculate each of the Green’s functions inside
a RW is 30� 30.

The results for the MS–MS, MS–PWG, and MS–RW transitions
clearly show the accuracy as well as the versatility of the complex
image solution of the transitions in terms of the ability to solve a
variety of transitions. Currently, work is being done to extend this
technique to other multilayered transitions (e.g., coplanar waveguide
(CPW) patch, CPW–RW).

IV. CONCLUSION

In this paper, an accurate and computationally efficient method
for solving the problems of aperture coupling from microstrip-to-
microstrip, microstrip-to-parallel plate, and MS–RW transitions has
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(a)

(b)

(c)

Fig. 5. Comparison between the authors’ results, FDTD results, and the
results of [3] for theS-parameters of two aperture coupled microstrips. (a)
jS11j, (b) jS21j, (c) jS31j. (Wu = WL = 0:254 cm, "u = "L = 2:22,
hu = hL = 0:0762 cm, L = 1:5 cm, W = 0:11 cm.)

Fig. 6. Comparison between experimental results, complex image re-
sults, and FDTD results forjS11j of two aperture-coupled microstrips.
(Wu = WL = 0:2028 cm, "u = "L = 2:94, hu = hL = 0:0762 cm,
L = 0:96 cm, W = 0:068 cm.)

been presented. This method uses a mixed electric–magnetic current
integral equation formulation with moment-method and complex
images. The results were compared with the FDTD method and
experiments to demonstrate the accuracy of the proposed method.

Unlike the other methods presented in the literature to solve
the transitions, the efficient application of the moment method (of
discretizing only the strips and apertures) combined with the accurate

Fig. 7. Comparison between complex image results and FDTD results for
jS21j, jS31j of two aperture-coupled microstrips. (Dimensions are given in
Fig. 6.)

Fig. 8. The return loss versus frequency for MS–PWG transition
(W = h = 4 mm, "r = 2, Ls = 10 mm, aa = 10 mm, ba = 1

mm, D = 24 mm.)

Fig. 9. The return loss versus frequency for MS–RW transition (W = 2

mm, h = 0:8 mm, "r = 2:3, Ls = 4 mm, aa = 5 mm, ba = 1 mm,
a = 23 mm, b = 10 mm.)

and the rapidly convergent complex-image Green’s functions, makes
this method more suitable for use with optimization software to
achieve optimum designs of the different transitions analyzed.

APPENDIX A:
COMPLEX IMAGE SPATIAL GREEN’s FUNCTIONS

(GA AND GA ) IN A MICROSTRIPSUBSTRATE

The Green’s functions (GA andGA ) in the space domain are
derived using the complex image technique [4], [5]. The Green’s
functions given below are for the lower substrate where the ground
plane is located atz = 0, the source is located at a general location
(x, y, z) and the field is located at a general location (x0, y0, z0),
where�h � z, z0

� 0 (see Fig. 1). The corresponding Green’s
functions of the upper substrate can be easily obtained by replacing
z with �z and z0 with �z0.

A. Green’s Function forGA

Let k� be the spectral variable, andkz , kz be related tok� as
follows:
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Then the Green’s function forGA in the spectral domain is given
by
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In (15), k�p andResp are, respectively, the TE pole and its residue
given by
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k !k
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Using Prony’s method [16],G(k�) can be approximated as follows:
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whereaxxi and bxxi are complex coefficients.
Performing the inverse Fourier transform of (13) and making use of

the Sommerfeld identity and residue theorem [16], the spatial Green’s
function for GA is given by

GA (�; z; z
0
) = GA +GA +GA (19)

where � is the radial distance between the source and field. The
termGA in (19) represents the contribution of the quasi-dynamic
images, which are dominant in the near field, while the termGA

represents the contribution of TE surface waves dominant in the far
field, and the termGA represents the contribution of a set of
images with complex amplitude and complex location, which are
dominant in the intermediate field. These three contributions are given
by
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B. Green’s Function forGA
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Next,�jkx is replaced in (24) with@

@x
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whereazxi and bzxi are complex coefficients.
Substituting (28) in (24) and performing the integration using the

Sommerfeld identity results in
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APPENDIX B:
COUPLING MATRIXES BETWEEN THE MAGNETIC CURRENT OF THE

APERTURE AND THEELECTRIC CURRENT ON THE MICROSTRIPLINE

Applying the Galerkin moment-method procedure and using the
Gauss–Chebyshev integration rule to take care of the transverse
current distribution functions�en and �mn in (7) and (8) gives the
following expression for the coupling matrixZ(1)

me of the lower
sub-problem:

Z
(1)
me = Z

xx

me + Z
zx

me (30)

V
0
(x; y; x

0
; y
0
) =

�e�jk r �k21(x� x0)2 � jk1ri � 1 r2i + 3(x� x0)2(jk1ri + 1)

r5
i

(37)



1132 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 7, JULY 1997

where

Z
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whereN andM represent the number of Gaussian quadrature nodes
on the magnetic and electric segments, respectively.xL and yk
are the Gaussian quadrature nodes on the aperture and microstrip,
respectively, andlen;k and lmm;L are the lengths of the electric and
magnetic segments, respectively. Also
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On the other hand

Z
zx
me(m;n) =

�1

4�NM

N

i=1

a
zx
i

N

k=1

M

L=1

I
zx
m;n;i;k;L (35)

whereNzx andazxi are, respectively, the number and amplitude of
the complex images ofGA . Thus

I
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V 0(x; y; x0; y0) is shown in (37) at the bottom of the previous page,
and

ri = �2 + �jbzxi
2

: (38)
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Effect of Conductor Backing on the Line-to-Line
Coupling Between Parallel Coplanar Lines

Kwok-Keung M. Cheng

Abstract—A good estimate of the coupling effect between parallel
coplanar waveguide (CPW) lines is important, especially for monolithic
microwave integrated circuit (MMIC) applications where unnecessary
crosstalk between conductors could be a serious problem. This paper
shows how these coupling parameters may be analytically obtained in
the presence of the back-face metallization. Closed-form formulas are
developed for evaluating the quasi-TEM characteristic parameters based
upon the conformal-mapping method (CMM). Very good agreement is
observed between the values produced by these formulas and by a
spectral-domain method (SDM).

Index Terms—Coplanar waveguide, coupled lines.

I. INTRODUCTION

Coplanar waveguide is often considered to have free space above
and below the dielectric substrate. However, this configuration has
been found unsuitable for monolithic microwave integrated circuits
(MMIC’s), where the substrate is typically thin and fragile. Prac-
tical realizations of coplanar waveguides (CPW’s) usually have an
additional ground plane beneath the substrate. The main advan-
tages of this back-face metallization are principally to increase the
mechanical strength as well as to improve heat dissipation. The
standard CPW, plus this additional conducting ground plane, is often
called conductor-backed CPW (CBCPW). Various approaches have
been reported on the characterization of coplanar transmission lines
such as the finite-difference method [1], the spectral-domain method
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